因式分解的多种方法(初中版).docx
《因式分解的多种方法(初中版).docx》由会员分享,可在线阅读,更多相关《因式分解的多种方法(初中版).docx(5页珍藏版)》请在第壹文秘上搜索。
1、因式分解的方法(初中版)因式分解是初中一个重点,它牵涉到分式方程,一元二次方程,所以很有必要学会一些根本的因式分解的方法。下面列举了九种方法,希望对大家的学习能有所帮助。1提取公因式这种方法比拟常规、简单,必须掌握。常用的公式有:完全平方公式、平方差公式等例:2x2-3x=0解:x(2x-3)=O&=O-G=3/2这是一类利用因式分解的方程。总结:要发现一个规律就是:当一个方程有一个解x=a时,该式分解后必有一个(x-a)因式这对我们后面的学习有帮助。2公式法将式子利用公式来分解,也是比拟简单的方法。常用的公式有:完全平方公式、平方差公式等注意:使用公式法前,建议先提取公因式。例二:Y-4分解
2、因式分析:此题较为简单,可以看出4=22,适用平方差公式a2-b2=(a+b)(a-b)2解:原式=(x+2)(x-2)3十字相乘法是做竞赛题的根本方法,做平时的题目掌握了这个也会很轻松。注意:它不难。这种方法的关键是把二次项系数a分解成两个因数4七的积64,把常数项C分解成两个因数GG的积GG,并使4心+生9正好是一次项b,那么可以直接写成结果例三:把2-7x+3分解因式.分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数.分解二次项系数(只取正因数):2=12=2Kh分解常数项:3=13=
3、31=(-3-1)=(-1)(-3).用画十字交叉线方法表示以下四种情况:11X2313+21=513X2111+2x3=7X2-31(-3)+2(-1)=-51-3X2-11(-1)+2(-3)=-7经过观察,第四种情况是正确的,这是因为交叉相乘后,两项代数和恰等于一次项系数一7.解原式=(x-3)(2x-1).总结:对于二次三项式0r2+b+c(a0),如果二次项系数a可以分解成两个因数之积,即a=%,常数项C可以分解成两个因数之积,即c=GG,把4,出,%e2,排列如下:X按斜线交叉相乘,再相加,得到4g+/0,假设它正好等于二次三项式以2+bx+c的一次项系数b,即臼+生G=b,那么二
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 因式分解 多种 方法 初中版
第壹文秘所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


重点工作绩效评估自评表.docx
冷、热疗法.ppt
