线性代数重点总结.docx
《线性代数重点总结.docx》由会员分享,可在线阅读,更多相关《线性代数重点总结.docx(14页珍藏版)》请在第壹文秘上搜索。
1、A不可逆r(,A)IA1.=OO人V=。有非零解O是解J特征值确列(行)向量线性相关A可逆r(八)=tAoo,AV=O只有零解岫勺特征值全不为零八的列(行)向量级性无关A”是正定矩阵月与同阶单位阵等价A=P?亿,月是初等阵?GRJAr=夕总有唯解向量组等价相似矩阵矩阵合同m反身性、对称性、传递性J关于e,%,e“:称为.的标准基,.中的自然基,单位坐标向量:e,华,e“线性无关:k/,4=1:WE)=n:任意个”维向盘都可以用牛4.4线性表示.J行列式的计算:假设人与8都是方阵(不必同阶),那么:W犹加胭;(FAW1.w1.上三角、下三角行列式等于主对角线上元素的乘枳.关丁副对角线:f1.2n
2、-1.f1.2n-1.逆矩阵的求法:AAT方阵的席的性明:AA=AF(Amy=()w设/(x)=n+xn+.+4*+%,对阶矩阵A规定:f(八)an,A,+am.1.Am-1+4+%E为A的一个多项式.J设AIw以1,.A的列向量为%,4,8的列向量为四,人,戊,AB的列向量为44.北,则T=M=1,2,.,S,即Mhh、B)=aa:用AB简若夕=他也,也尸.则A=b1.a1.+b2a2+bnan电的一个提即:八卤向第i个列向故/;是NKJ列向量的线性组合,组合系数就是q的各分量:高运算速度A川内第i个行向fib;是所内行向量的级性组合,组合系数就是a,的各分量.J用对向矩阵A左乘一个矩阵,相
3、当于用A的对用线上的各元素依次乘此矩阵的行向量;用对角矩阵右乘一个矩阵,相当于用A的对角线上的各元索依次乘此矩阵的列向量.两个同阶对角矩阵相乘只用把对角线上的对应元素相乘,AU与分块对角阵相乘类似,即:4=.B=AB=矩阵方程的解法:设法化成AX=B(B)XA=BAi1.Bn当IAIKO时,(D的解法:构造SB)UJ(FY)(当研一列时,即为克莱姆法则)(ID的解法:将等式两边转置化为AX=Br.用(D的方法求出X1.再转巴得XAr=。和Br=。同解(A8列向量个数相同),那么:它们的极大无关组相对应,从而秩相等:它们对应的局部组有一样的线性相关性;它们有相同的内在线性关系.判断八小.、是Ar
4、=O的根底解系的条件:仇明线性无关:/,小,-,/是AV=O的解:S=-A)=每个解向量中自由变量的个数.零向量是任何向量的线性组合,零向量与任何同维实向量正交.单个零向量线性相关:单个非零向量线性无关.局部相关,整体必相关:整体无关,局部必无关.原向信组无关,接长向量级无关:接长向量组相关,原向量组相关.两个向量线性相关=对应元素成比例:两两正交的非零向量组线性无关.向生组里,见,,华中任向量区QWiW)都是此向量组的线性组合.向量组织,“线性相关o向量级中至少有一个向量可由其余1个向量线性表示.向量级四,生,对线性无关。向量级中每一个向量/都不能由其余-1个向量线性表示.m维列向量组即,用
5、线性相关Or(八)n;in维列向量组,线性无关Or()=n.r(八)=0A=o.假设a.%.“线性无关,而.:.,Q线性相关,那么夕可由.”线性表示,且表示法惟一.矩阵的行向量组的秩等于列向量组的秩.阶梯形矩阵的秩等于它的非零行的个数.矩阵的行初等变换不改变矩阵的秩,且不改变列向址间的线性关系.矩阵的列初等变换不改变矩阵的秩,且不改变行向量间的线性关系.向51组等价1和i.2,可以相互线性表示.记作:4%.,4华机,乩,4M阵等价IA经过有限次初等变换化为8.记作:AB矩阵4与8等价Or(八)=N0工A8作为向量级等价,即:秩相等的向量组不一定等价.矩阵A与3作为向量组等价Or(a、,a)=N
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 线性代数 重点 总结
第壹文秘所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


重点工作绩效评估自评表.docx
