解三角形课件.ppt.ppt
《解三角形课件.ppt.ppt》由会员分享,可在线阅读,更多相关《解三角形课件.ppt.ppt(28页珍藏版)》请在第壹文秘上搜索。
1、第十讲第十讲 解三角形解三角形ABCabcABC中:中:A+B+C=(1)(2)22CBA22C(3)BAbaBAsinsinRCcBbAa2sinsinsin 正弦定理正弦定理:CRcBRbARasin2sin2sin2(边化角边化角)RcCRbBRaA2sin2sin2sin(角化边)(角化边)从理论上正弦定理可解决两类问题:从理论上正弦定理可解决两类问题:1两角和任意一边,求其它两边和一角;两角和任意一边,求其它两边和一角;2两边和其中一边对角,求另一边的对角,进两边和其中一边对角,求另一边的对角,进而可求其它的边和角。而可求其它的边和角。aab 已知两边和其中一边对角解斜三角形有两解已
2、知两边和其中一边对角解斜三角形有两解或一解(见图示)或一解(见图示)CABbaCABbaCABbaCAbaa1B2Ba=bsinA 一解bsinAab 一解一解ab 2accbacosC 2acbcacosB 2bcacbcosA 222222222余弦定理:余弦定理:求角求角CabbacBaccabAbccbacos2cos2cos2222222222求边求边余弦定理可解决两类问题:余弦定理可解决两类问题:1已知三边求三角;已知三边求三角;2已知两边和它们的夹角,求此角对边,进而已知两边和它们的夹角,求此角对边,进而可求其它角。可求其它角。bcabc面积公式:面积公式:BacAbcCabSs
3、in21 sin21 sin21 bc典型例题分析:典型例题分析:例在例在ABC中,角均为锐角,且中,角均为锐角,且则则ABC的形状是(的形状是()A直角三角形直角三角形 B锐角三角形锐角三角形 C钝角三角形钝角三角形 D等腰三角形等腰三角形,sincosBA答案:答案:cossin()sin,22AABA B都是锐角,都是锐角,,222AB ABC则则选选训练、在锐角训练、在锐角ABC中,求证:中,求证:CBACBAcoscoscossinsinsin证明:证明:ABC是锐角三角形,是锐角三角形,即即,2AB022ABsinsin()2AB即即 sincosAB同理同理 sincosBCsi
4、ncosCA,CBACBAcoscoscossinsinsinABCBabsin2A0300600060120 或0015030 或例、在例、在中,若中,若则则等于(等于()B C D A答案:答案:012 sin,sin2sin sin,sin,302baBBABAA或或 0150选选 D例例3、在、在ABC中,中,则,则 的最大值是的最大值是_。,26AB030C ACBCCAB,sinsinsinsinsinsinACBCABACBCABBACBAC解:解:ACBC2(62)(sinsin)4(62)sincos22A BA BABmax4cos4,()42ABACBC例例4、在、在AB
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 三角形 课件 ppt
第壹文秘所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。


重点工作绩效评估自评表.docx
