欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    矩阵秩的相关结论证明及举例.docx

    • 资源ID:994000       资源大小:15.73KB        全文页数:4页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    矩阵秩的相关结论证明及举例.docx

    华北水利水电大学矩阵秩的相关结论证明及举例课程名称:线性代数专业班级:能源与动力工程热动101班成员组成:王威威联系方式:2014年12月30H一:摘要矩阵的秩是数学中一个极其重要并广泛应用的概念,是线性代数的一个重要研究对象,因此,矩阵的秩的结论作为线性代数的一个重要结论已经渗透到各章节之中,他把线性代数的内容紧紧联系在一起,矩阵的秩作为矩阵的一个重要本质属性那么贯穿矩阵理论的始终,所以对矩阵秩的研究不仅能帮助我们更好地学习矩阵,而且也是我们学习好线性代数各章节的有力保证。关键词:矩阵秩结论证明英文题目AbstractlMatrixrankisanextremelyimportantandwidelyusedinthemathematicalconcept,isanimportantresearchobjectoflinearalgebra,asaresult,theconclusionoftherankofmatrixasanimportantconclusionoflinearaIgebrahaspenetratedintochapter,associatethecontentofthepositivelinearalgebraandmatrixofrankasanimportantessentialattributeofthematrix,however,throughoutthecourseofthetheoryofmatrixsothatthestudyofmatrixrankcannotonlyhelpusbetterlearningmatrixandchapterwelearngoodlinearalgebraKeyWordszmatrixrankconclusionproof二:正文1:定义定义1.Il在矩阵A=(%1.中任意取k行k列(lk<min(m5n),位于这k行k列交点上的k*2个元素,按照他们在矩阵A中的相应位置所组成k阶行列式称为矩阵A的一个k阶子式。定义1.12假设mn矩阵A中至少存在一个r阶子式不为0,而所有r+1阶子式(如果有的话)全为0,那么称r为矩阵A的秩,记为Rank(八),或简记为R(八)。此外,我们规定,零矩阵的秩为02:矩阵秩的相关结论证明及举例2.1矩阵几个重要结论的证明:结论1对于任意矩阵A,有(4)=乂4)。其中A是矩阵A的转置矩阵.证因为M=IA,那么A与同的不等于零的子式的最高阶数相等,即心)二44)结论2对于任意矩阵A,有A)=),其中k是非零常数.证因为KA与A的不等于零的子式的最高阶数相等,那么一(公)二(4).结论3对于任意矩阵A,r()r(八),其中A*是矩阵A的伴随矩阵.证当r(八)=n,即A可逆时,由于卜二同"故4*也是可逆的,即r(A>n,当r(八)=n-l时,有IAl=0,于是从而r(A")l,又因为r(八)=n-l,所以至少有一个代数余子式&0,从而又由(a*)n1,于是(a*)=1,当0r(八)一1时,A*=0,即,当r(八)=r(A*)=,1,当r(八)=/i-l此时代)=0.那么0,当(4)<-1即r().结论4r(AB)nin(r()r)证设AmX/4“J(八)=(8)=s,因为r(八)=r,所以存在可逆矩阵P,Q使得PAQ=(O)'于是r(AB)=rPAB')=PAQQ'rffB,作、rAB)=rlr0)=r其中用=0=陶所以1.l00J::显然最右边一个矩阵的秩不超过它的非零行数r,也不超过<4)=s,所以r(AB)mn(r(八),r()>结论5设A,B,C分别为机乂,又,乂4矩阵,那么F中mC-AABOYO-ABC.证因为,所以I。/人BBC)bo)结论6设A,B均为n*m阶矩阵,那么r(A+B)至r(八)+r(B).证明:设A=(al,a2,an),B=(bl,b2,bn)那么A+B=(al+bl,a2+b2,an+bn)于是r(al+bl,a2+b2,an+bn)=r(al,a2,an)=r(bl,b2,bn)故r(AB)r(八)+r(B).结论7设A,B均为n阶方阵,那么r(ABE)r(4-E)+,(B-E)证明例设A是n阶可逆矩阵,且勺=试用a,B,C表示X。CX解已。CXbr2-CA-'×hri、ABOX-CA-lBhr2-brl×A'lB、-AOoX-CA1B那么r"B=r()+r(x-C4,B)=rt÷r(x-C4,)=11CX结论8r(A,B)r(八)+r(B)证明:设A1.A2,A3Ar为A的列向量的极大线性无关组,B1,B2,B3BS为B的列向量的极大线性无关组,那么(A,B)的列向量均可由A1,A2,A3.Ar,Bl,B2,B3Bs线性表示.r(A,B)rAl,A2,A3.Ar,Bl,B2,B3Bs,而Al,A2,A3.Ar,Bl,B2,B3.Bs中线性无关的向量一定不超过r+s个,所以r(A,B)r(八)+r(B)结论9设A,B都是n阶非零矩阵,且AB=O,那么A和B的秩都小于n因为AB=O,所以r(八)+r(B)Wn,因为A0,B0,所以r(八)1,r(B)1,所以1r(八)n,1r(B)n结论10对于任意方阵A,必存在正整数m,使得r(A*(m+l)=r(A*m)证明:由结论4知r(八)r(A*2)r(A*3)r(A*k)而(rA)是有限数,上面不等式不可能无限不等下去,那么一定存在正整数m,使得r(A*(m+l)=r(A*m)结论11:设D=北,那么r(D)Mr(八)+r(B)ABO1Or=r,OEn|_3En_得r(AB)+nr(八)+r(B),即r(AB)r(八)+r(B)-n.三:结束语本文列举了一些矩阵秩的相关重要结论、证明和举例。在此过程中,加深了我们对矩阵的秩的认识,并对其有了一些较为清晰的理解,我们相信这对我们以后的学习会有很大的帮助。同时我们也清楚,我们脚下的路还很漫长,不能满足于一些根本理论的研究,要深入挖掘,以探求更深层次的知识。参考文献1李炯生,查建国,王新茂编写的线性代数。中国科学技术大学出版社M同济大学线性代数(第三版)(第四版)J百度百科,图书馆查找

    注意事项

    本文(矩阵秩的相关结论证明及举例.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开