欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    课题§9三角函数的最值.docx

    • 资源ID:96726       资源大小:30.33KB        全文页数:3页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    课题§9三角函数的最值.docx

    课题§4.9三角函数的最值1 .基础知识(1) 配方法求最值主要是利用三角函数理论及三角函数的有界性,转化为二次函数在闭区间上的最值问题,如求函数y=sin2x+sinx+l的最值,可转化为求函数y=+lj-l,l上的最值问题。(2)化为一个角的三角函数,再利用有界性求最值:asinx+bcox=c2+b1sin(x+)如函数y=5的最大值是()2+smx+coxA.-1B.+1C.1-D.-1-应选B(2) 222(3) 数形结合SinY常用到直线斜率的几何意义,例如求函数y=的最大值和最小值。函数cox+2Qiny=-一一的几何意义为两点尸(一2,0),。90$X,5巾外连线的斜率2,而Q点的cox+2轨迹为单位圆,由图可知ma=*,yniM二一日(4) 换元法求最值利用换元法将三角函数问题转化为代数函数,此时常用万能公式和判别式求最值。利用三角代换将代数问题转化为三角函数,然而利用三角函数的有界性等求最值。例如:设实数,y满足/+y2=,则3+4y的最大值为一.解:由+>2=,可设X=COSe,y=sin夕则3x+4y=3cos6+4sine=5sin(0+e),则其最大值为5。2 .重点难点:通过三角变换结合代数变换求三角函数的最值。3 .思维方式(1)认真观察函数式,分析其结构特征,确定类型。(2) 根据类型,适当地进行三角恒等变形或转化,这是关键的步骤。(3) 在有关几何图形的最值中,应侧重于将其化为三角函数问题来解决。4 .特别说明注意变换前后函数的等价性,正弦、余弦的有界性及函数定义域对最值确定的影响,含参数函数的最值,解题要注意参数的作用和影响。二、题型剖析1、化为一个角的三角函数,再利用有界性求最值。例1:P(66)函数Y=acosx+b(a.b为常数),若一7y1,求bsinx+acosx的最大值.练习:求函数y=six+石SinX8sx-l的最值,并求取得最值时的X值。解:yQ- cos 2x) + sin 2x -1sin2x-cos2x-=sin(2x-)-22262当2x-g=2%+g,即X=Zr+f(ZZ)时,y取得最大值,ymax=-6232当2工一乡二2左万一工,即X=Z万一乡(ZeZ)时,y取得最小值,ym,-x=-o6262思维点拨:三角函数的定义域对三角函数有界性的影响02、转化为闭区间上二次函数的最值问题。,X例2P(66)求函数y=81:sinX+81Xsin2x的最值.解:y=1 +cosx.cos%cIY7SinxH2sinXCOSX=2COSX+sinxsinx14J87VsinX0.,.sx±l当8Sx=一一时,y有最小值一,无最大值.48练习:是否存在实数a,使得函数y=sin2+48sx+“。-3在闭区间0,上的最大值821.2_是1?若存在,求出对应的a值?若不存在,试说明理由。M(1Y51解:y=-CosxaH+a-I2J482当0x工时,O8SX1,令Z=COSX则0f1,2(1Y6T25八/I2J482l00ql,即02时,则当z=q即COSR=时,yw=4+2一二1222482=>='1或Q=-4(舍)2°-<0,即<OfltMSf=0即cosx=,ymax=-«-=l=>a=(舍)28253°>1,即>2时,则当f=唧8sX=1时,ynia=c+-a-=l=>a="(舍)282133综上知,存在。二二符合题意。2思维点拨:闭区间上的二次函数的最值问题字母分类讨论思路。3、换元法解决SinX±cosx,sinxcosx同时出现的题型。例3:求函数y=(4-35由竹(4-3以)$工)的最小值。解:y=16-12(sinx+Cosx)+9sinXCOSx令f=sinX+cosx=Vsinx÷1.r-V2.V2,则SinXCOSX=-I4J2.y=16-12r+9=(g)+,r72.247所以当£=§时,ymin=-思维点拨:遇到SinX+cosx与SinX8S/相关的问题,常采用换元法,但要注意sinx+COSY的取值范围是四,血,以保证函数间的等价转化。4、图象法,解决形如y=:SlnX+c型的函数。bcosx+a2-sm%例4、P(66)求函数y=的最大值和最小值.2一cosX思维点拨:此题为基本题型解决的方法很多,可用三角函数的有界性或万能公式,判别式法。这里以图象法的主求解。TTTt例5、设x0,-,若方程3sin(2x+)=有两解,求。的取值范围。23解:设y=3sin(2x+y),y=at要使两函数图象有交点(如图),思维点拨:在用数形结合法解题时,作图一定要准确。本题若改为方程有一解,则。的范围又该怎样呢?5、利用不等式单调性求最值。思维点拨:利用基本不等式求最值时,等号不能取得时,可利用单调性。三、课堂小结(1)求三角函数最值的方法有:配方法,化为一个角的三角函数,数形结合法换元法,基本不等式法。(2) 三角函数最值都是在给定区间上取得的,因而要特别注意题设所给出的区间。(3) 求三角函数的最值时,一般要进行一些三角变换以及代数换元,须注意函数有意义的条件和弦函数的有界性。(4) 含参数函数的最值,解题要注意参数的作用和影响。四、作业:

    注意事项

    本文(课题§9三角函数的最值.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开