欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    有监督机器学习算法(SVM支持向量机)进行异步呼吸自主检测摘要.docx

    • 资源ID:834507       资源大小:13.77KB       
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    有监督机器学习算法(SVM支持向量机)进行异步呼吸自主检测摘要.docx

    摘要:背景:当机械通气期间患者出现一定程度自主呼吸,且自主呼吸周期与机械通气不同步时,会对患者的健康状态造成一定影响。同时,当下一些检测自主呼吸与呼吸机产生对抗的机器学习算法大多仅适用于该算法的特定训练病例,不能用于预测未知病例。为临床应用带来较大的麻烦。因此,需要一种通用的呼吸模式(异步或正常)检测算法,使其对绝大多数病例都能较好的适应。方法:本文提出一种常见的有监督机器学习算法(SVM支持向量机)进行异步呼吸自主检测。通过分析产生异步呼吸时通道压力数据的特定变化来获取支持向量机所需的特征向量,使得选取的特征向量具有对不同病例的普适性与和待解决问题的高相关性。结果:本文统计了4个不同病例不同呼吸时段的通道压力数据,对不同病例单独使用模型进行训练与预测,验证模型对该问题的适应性。后对不同病例间进行了相互预测训练,验证对不同病例间的普适性。结果中,单独预测准确率均能达到93%以上,对于样本数较多病例可达97%。相互预测中,准确率除一例为90.91%,其余示例均在95%上下。可以发现,本文所提出的方法对单一病例、不同病例均有较好的适应性,算法普适性高,可以潜在的为临床医生提供相应的评估信息。关键词:机器学习,SVM1异步呼吸,模式分类

    注意事项

    本文(有监督机器学习算法(SVM支持向量机)进行异步呼吸自主检测摘要.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开