有监督机器学习算法(SVM支持向量机)进行异步呼吸自主检测摘要.docx
-
资源ID:834507
资源大小:13.77KB
- 资源格式: DOCX
下载积分:5金币
友情提示
2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。
|
有监督机器学习算法(SVM支持向量机)进行异步呼吸自主检测摘要.docx
摘要:背景:当机械通气期间患者出现一定程度自主呼吸,且自主呼吸周期与机械通气不同步时,会对患者的健康状态造成一定影响。同时,当下一些检测自主呼吸与呼吸机产生对抗的机器学习算法大多仅适用于该算法的特定训练病例,不能用于预测未知病例。为临床应用带来较大的麻烦。因此,需要一种通用的呼吸模式(异步或正常)检测算法,使其对绝大多数病例都能较好的适应。方法:本文提出一种常见的有监督机器学习算法(SVM支持向量机)进行异步呼吸自主检测。通过分析产生异步呼吸时通道压力数据的特定变化来获取支持向量机所需的特征向量,使得选取的特征向量具有对不同病例的普适性与和待解决问题的高相关性。结果:本文统计了4个不同病例不同呼吸时段的通道压力数据,对不同病例单独使用模型进行训练与预测,验证模型对该问题的适应性。后对不同病例间进行了相互预测训练,验证对不同病例间的普适性。结果中,单独预测准确率均能达到93%以上,对于样本数较多病例可达97%。相互预测中,准确率除一例为90.91%,其余示例均在95%上下。可以发现,本文所提出的方法对单一病例、不同病例均有较好的适应性,算法普适性高,可以潜在的为临床医生提供相应的评估信息。关键词:机器学习,SVM1异步呼吸,模式分类