欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    1.4.1用空间向量研究直线、平面位置关系(解析版).docx

    • 资源ID:701913       资源大小:176.05KB        全文页数:13页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    1.4.1用空间向量研究直线、平面位置关系(解析版).docx

    L4.1用空间向量研究直线、平面位置关系考点01:直线的方向向量1 .若点A(TO,2),8(1,4,10)在直线/上,则直线/的一个方向向量为()A.(1,2,4)B.(1,4,2)C.(0,2,-1)D.(0,4,12)【答案】A【分析】由方向向量的概念求解,【详解】由AB=(2,4,8),/的方向向量与AB平行,只有选项A满足题意,故选:A2 .如图,在四棱锥P-ABCo中,底面ABCO为矩形,附J_平面48CD,E为尸。的中点,AB=AP=IfAD=6,试建立恰当的空间直角坐标系,求直线PC的一个方向向量.【答案】(1,3,-1)【分析】建立如图所示的空间直角坐标系,根据方向向量的定义可得.【详解】如图所示,建立空间直角坐标系A一到z,则P(0,0,D,C(l,3,0),所以尸C=(L3,-l)即为直线PC的一个方向向昂考点02:平面的法向量3 .已知A(2,0,0),8(0,2,0),C(0,0,2),则平面ABC的一个法向量可以是()B.(1,-U)【答案】A-2x+2y = 0-2x+2z = 0【分析】代入法向量的计算公式,即可求解.【详解】AB=(-2,2,0),AC=(-2,0,2),令法向量为血=(x,y,z),则.y=Z=X,可取zn=(T,故选:A.4 .在棱长为2的正方体A8CZ)-ABCQ中,E,尸分别为棱AA,A片的中点,在如图所示的空间直角坐标系中,求:平面3D。西的一个法向量;平面BDEF的一个法向量.【答案】(I)AC=(-2,2,0)(答案不唯一)(2)n=(2-2-1)(答案不唯一)【分析】(1)利用线面垂直的判定定理求解法向量;(2)利用空间向量的坐标运算求平面的法向量.由题意,可得0(0,0,0),5(2,2,0),4(20,o),C(O,20),E(Lo,2),连接AC,因为底面为正方形,所以AC/6O,又因为OA_L平面ABCDACU平面ABC。,所以OA_LAC,且BODD1=D,则AuL平面5。蜴,AC=(-2,2,0)为平面5。心的一个法向量.(答案不唯一).(2)D=(2,2,0),DE=(1,0,2).设平面BDE尸的一个法向帛为"=(,y,z),则H-DB=Of2x+2y=0,y=,n-DE=O,"x+2z=0,''1Z=X.2令=2,y=-2,z=-l.=(2,-2,-1)即为平面B的一个法向量.(答案不唯一).考点03:空间向量法做直线与直线平行5 .己知正方体ABS-A/GR中,M与N分别是棱8片与对角线CA的中点.求证:MNUBD,并且MN=-BD.2【答案】证明见解析【分析】建立空间直角坐标系,写出向量的坐标,利用坐标关系来证明.【详解】以力为坐标原点,OAOCoA所在直线分别为乐XZ轴,建立空间直角坐标系,如图,不妨设正方体的棱长为2,则B(ZZo),D(0,0,0),A(N0,2),C(020),M(224),N(l,1,1)M=(TTO),BD=(-2l2,0);因为60=2肪7,且,4=2近,|“冈=无,所以MN/BD,并且MN=38。.6 .如图,在正方体ABeQA/CQi中,棱长为2,M,N分别为,AC的中点,证明:MNBC.【答案】证明见解析.【分析】连接阴,由中位线定理即可证明MN耳C.【详解】连接A%如图,B由正方体知四边形BBiAy是正方形,且M是AB的中点,所以AACAB=M,即M是A4的中点,又N是AC的中点,所以MNB£.考点04:空间向量法做直线与平面平行7 .设直线/的方向向量为d,平面。的法向量为",Iaa,则使/成立的是()A.d=(2,-1,3),/=(TLl)B.d=(1,-1,2),w=(-1,1,-2)C.3=(1,1,0),/i=(2,-1,0)D.=(1,-2,1),n=(1,1,2)【答案】A【解析】/a等价于”与垂直,分析选项即可得解.【详解】A中i=(2,T,3)(TJl)=-2T+3=0,所以q_L,故/“其他答案G工O故选:A【点睛】本题考查的是空间向量的应用,较简单.8 .如图,已知斜三棱柱ABCAgG,在AG和BC上分别取点M,N,使AM=AAC;,BN=kBC,其中OvAl,求证:MN平面ABgA.【答案】证明见解析【分析】用AA,、AB蓑示MN,即可得到MN与向量AB,A4共面,从而得证.【详解】证明因为a=A4G=Maa+A4+4g)=Ma41+ab+AN=AB+BN=AB+kBCr所以MN=4N-AM=4+48+80)-(A8+ABC)=ZAA+(J)A8,所以MN与向量",AAI共面,而MNN平面ABBA,所以MN平面438个.考点05:空间向量法做平面与平面平行9 .若平面2夕,则下面可以是这两个平面法向量的是()A.H1=(1,2,3),Zi,=(3,2,1)B.nx=(1,2,2),n2=(2,2,1)C.1=(1,1,1),w2=(-2,2,1)D.n=(l,l,l),n2=(-2,-2,-2)【答案】D【分析】利用已知条件可知两个平面的法向量互相平行,判断选项即可.【详解】因为平面夕,所以两个平面的法向量应该平行,只有D项符合.故选:D.【点睛】本题主要考查了平面的法向量.属于容易题.DlCh BiCi10 .如图,已知棱长为4的正方体ABCo-A由/&£>/中,M,ME,尸分别是棱A/。/,AiBlf的中点,求证:平面AMNll平面£7议).【答案】证明见解析【分析】根据题意建立空间直角坐标系,分别写出AM,N,E,E8,f>,求出平面AWN与平面耳的法向量,根据法向量与法向量的关系即可证明.【详解】由正方体的棱长为4,建立如图所示的空间百角坐标系-,z,则D(0,0,0), A(4,(),0),M(2,0,4), N(4,2,4), 3(4,40),E(0,2,4)(2,4,4)AM =(-2,0,4),V = (0,2,4), QE = (0,2,4),9'= (-2,0,4),设平面AMN的一个法向量为m= (,y,z),则mAM = 0m,AN = 0-2x ÷ 4 = 02y + 4z = 0,令 z = l,解得 x = 2,y = -2所以z = (2,-2,1)设平面比8£)的一个法向吊:为n = (x, RZ),则/nDE = 0 j2y + 4z = 0nBF = 01-2x+4z = 0令z = l,解得x = 2,y = -2所以=(2,-2,1)所以/n平面AMNIl平面EFBD.考点06:空间向量法做直线与直线垂直11 .已知空间四边形ABC。中,ADLBC1ABlCDt求证:AClBD.【答案】证明见解析【分析】利用向量垂直的运算法则证明线线垂直.【详解】证明:设A8=,AC=6,A。=C贝IJBC=AC-AA=力一a,Co=Ar)-AC=。一43。=AO-ABADLBC,ABA.CD.ADLBCyABlCDc(b-a)=Oac=bca(c-b)Oac=ab于是可得ab=bcACBD=h(c-a)=hc-ba=O.ACLBD即AeiBO12 .如图,在平行六面体48C。ASGA中,A8=4,AC)=4,AA=5,NDA8=60。,NBAA1=60。,ZDAA1=60°,M,N分别为。£,CM的中点.求证:MNLACx.【答案】证明见解析【分析】利用空间向量的数量积为。的方法证明两直线垂直.【详解】证明:设A8=,AD=kAA=。,这三个向最不共面,a,b,c构成空间的一个基底,我们UUU用它们表示MN,AC1,则MN=MCl+CN=ga一;b,ACi=AB+SC+CCi=a+b+ct所以MN4C=(;。-;/?)(4+力+0)=a'a+ab+a'C-ha-bb-hc=×42+×42×cos60°+×4×5×cos60°-×42×cos60°-×42-×4×5×cos60o=0.222222所以MN_LAG.考点07:空间向量法做直线与平面垂直13.如图所示,在长方体A8C。一ANGA中,AO=I,AB=AAJ=2,N、M分别A8、G。的中点.(1)求证:NM平面AA。”(2)求证:NMj_平面AgM.【答案】(1)证明见解析;(2)证明见解析.【分析】(1)以点。为坐标原点,DA.DC.DA所在宜线分别为、八Z轴建".空间宜角坐标系,利用空间向量法可证得结论成立;(2)求出平面ABlM的一个法向后,利用空间向量法可证得结论成立.【详解】(1)以点O为坐标原点,OA、DC、OA所在直线分别为x、Z轴建立如卜图所示的空间宜角坐标系,则A(l,0,0)、M(U,1)、N(IJ0)、4(122)、4(1,0,2),NM=(To,1),易知平面A1A。A的一个法向量为1=(0,1,0),NMm=-IXo+0xl+lx0=0,则NM_L/n,.MW(Z平面AAoA,故NM平面AAoA:(2)设平面AMM的法向量为=(,y,z),A4=(020),AM=(TL-I),所以,NM=n,故NMj平面ABM.小A耳=O得"AM=o'2y = 0-x+ y-z = O取x=-l,可得 = (T,O,1),14.如图,四棱锥尸ABQ)中,PA_L底面ABC。,ABLAD,AC±CDtZABC=0PA=AB=BC=2,E是PC的中点.求证:(1)CD1AE;(2)P£_L平面【答案】(1)证明见解析;(2)证明见解析.【分析】方法一:(I)以A为坐标原点建立空间直角坐标系A-VZ,得到C。、AE,计算得到8AE=O,即证明COLAEUUU1(2)先写出尸力坐标,再求出平面AeE的法向依,验证可知尸£),即证明包,平面ABE方法二:(1)由PA_L底面ABCQ证明PAlCD,再结合AC_LCD可证明CD_L平面PAC.从而得到CC)_LAE.(2)由PA_L底面ABCD证明RA_LAB,再结合AB_LAD证明AB_Z平面/MO,从而得到ABJ.PD;再证明AEJ_PC.结合CZ)JLAE可证AE,平面PCZ),得到AE_LP£;最后根据线面垂百的判定即可以证明PQJ_平面ABE【详解】方法-(1)以A为坐标原点,AB,AD,AP所在直线分别为4,)'Z轴,建立如图所示的空间直角坐标系,则A(0,0,0)B(2,0,0),C(l,3,),Q(O,怨,1,P(0,0,2),Eg,专,1,所以。=T当°F=fl所以cz>4E=Tl+且X立+i=o,所以CT>_L4E.I22)232(2)由(1),得PQ=(O,空2,AB=(2,0,0),AE=,1.(2x=0设向量”=(,y,z)是平面ABE的法向量,则.O?"?,即IG,取丁=2,贝lj=(0,2,-6),/Z-AE=O-X+y+z=O',1123所以Po=

    注意事项

    本文(1.4.1用空间向量研究直线、平面位置关系(解析版).docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开