The Establishment for The Buildings Energy-efficiency Large System in Sanjiangyuan Area with Analytic Hierarchy Process.docx
TheEstablishmentforTheBuildingsEnergy-efficiencyLargeSysteminSanjiangyuanAreawithAnalyticHierarchyProcessKewords:QinghaiTibetPlateau;Sanjiangyuan;BuildingsEnergy-efficiency;EstablishSystemAbstract:Itisfoundthatatheoreticalsystemforenergy-efficientsolutionsofbuildingsinSanjiangyuanareaisdifficulttoestablishduetothecomplexityinquantitativeanalysisonsomefactors.Therefore,basedonapreliminaryanalysisonthecomplexnatureofthedecisionmakingprocessofbuildingenergyefficiencyinthree-riversourcearea,andinfluentialfactorsontheissue,itisrecognizedthatAnalyticHierarchyProcess(AHP)isanefficientapproachforanalyzinganddiscussingtheestablishmentofthesystem,andthusaguidelinecanbesetupforsomepilotprojects.!.DefineaHierarchicalStructureOurresearchteamwantstooptimizetheoverallbenefitsofthesolutiontobuildingenergyefficiencyinthree-riversourceareabyanalyzingdifferentalternatives.Thegoalofourstudyistomakeefficientuseofcleanenergyandoptimizetheoverallbenefits.Inordertoachievethegoal,thethreemaincriteriaforassessingtheoutcomeshouldbeconsideredareeconomicbenefit,socialbenefitandenvironmentalbenefit,amongwhichenvironmentalbenefitisthemostimportantcriterion.Afterfurtherdiscussion,wethinkthatthethreemaincriteriashouldbeclassifiedundersomemoredetailedcriteriaincludingdirecteconomicbenefit,indirecteconomicbenefit,energyresources,energywithadvantage,minimizationofpollution,improvementofurbanlandscape,recognitionofresidentsinthearea.Itisassumedthatonlythecriteriamentionedaboveareanalyzed,andwiththesecriteriasomespecificalternativesforimprovingbuildingenergyefficiencycanbeproposed.Theresearchprovidestwoalternatives,includingcleanenergy(solarenergyandwindenergy)andinsulationstructure.Itisevidentthatthesetwoalternativesarerelevanttoallthecriteriamentioned,sotheyarefactorsatalternativelevel,thelowestlevelofthehierarchicalstructure.Thefactorsareputatdifferentlevelsfollowingtheinterrelationshipsbetweenthem,andlinkedbylines.Inordertoassistquantitativeanalysis,fromthetoptothebottomthelevelsaremarkedA GoalwithA,B,C,D,etc.Andfromlefttorightdifferentfactorsaremarkedwith1,2,3,4,etc(Fig.l).Clraa EMrXy(Dl)BCriteriaTbtDtMSBWnaUt>oa>ervc*ir(Dl)CCriteriaDAlternativesFig.1HierarchicalStructure2.ComparisonMatrixandEvaluationofExpertsComparisonMatrixescanbemadebasedonthehierarchicalstructure.Themethodofmakingacomparisonmatrixistoputeachfactorwithsubordinatefactors(criteria)inthetopleftcornerasthefirstfactorinamatrix,anditssubordinatefactorsareputinthefirstlineandthefirstcolumnfollowingtheirnumbers111.Themethodforevaluatingthecriteriaistoconsult13expertsbycorrespondence.Theyareaskedtodeterminethelevelofimportanceofthesefactorsbycomparetheminpairs,andthelevelofimportancescoredfrom1to9(table2-1).Table2-1ScalesofimportanceScalesofDescriptionimportance135792t4,6,8reciprocalThecomparedtwofactorsareequallyimportantOnefactorisalittlemoreimportantthantheotherOnefactorisobviouslymoreimportantthantheotherOnefactorismuchmoreimportantthantheotherOnefactorisextre三lymoreimportantthantheotherBetweenthescalesaboveIftheratiobetweenfactoriandfactorjisalj,ratiobetweenfactorjandfactoriisajbequaledtolalj.Afterconsultingexperts,comparisonmatrixescanbemade(table2-2).ABlB2B3Table2-2comparisonmatrixesC5C6BlClC2B2C3C4B3Bl11/31/7Cl11/3C317C515B211/5C21C41C61B31ClDlD2C2DlD2C3DlD2C4DlD2Dl15Dl11/3Dl11/8Dl15D21D21D21D21C5DlD2C6DlD2Dl11/7Dl11/5D21D213.SingleHierarchicalArrangementandTest(Calculationofweightvector)Accordingtotheresultsofcomparisonmatrixesfromtheexperts,Rankingscanbemadewithsomemathematicmethods.Singlehierarchicalarrangementistocalculatetherelativeweightofeachfactorcomparedwithitscriteria,soitsnatureistocalculateweightvectoroInthisresearchsummethodisusedtocalculateweightvectoroSummethodmeansthatinaconsistentcomparisonmatrix,theresultofnormalizationisweightvector,whileinaninconsistentcomparisonmatrix,theresultofnormalizationisalmostequaledtoitsvector,andtheweightisthearithmeticaveragevalueofthevectorofthetotalncolumns.TheequationisasEq.1.7b,Jt=IAftertherankingsforeachlevel,theCOmPariSOnmatrixesshouldbetestedwiththeirlevelofconsistency.AmatrixisIogicallyjustifiedonlyifitpassesthetest,afterwhichtheresultofamatrixcanbeanalyzed.Theproceduresofthetestforevaluatingtheconsistencyareasfollowing121:Step1Calculatetheconsistencyindex(C.I.)ofeachmatrix.Eq.2.C. = 2zi-1(2)Step2Findouttherandomindex(R.I.)ofeachmatrixbylookinguptable3-1.Table3-1RandomIndexOrderofMatrix12345678R.I.OO0.580.901.120.241.321.41Orderof9101112131415MatrixR.I.1.451.491.521.541.561.581.59Step3Calculateconsistencyratio(C.R.),basedonwhich,makejudgement.Eq.3.(3)If