欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    三角函数 专题练习题.docx

    • 资源ID:369687       资源大小:229.46KB        全文页数:16页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    三角函数 专题练习题.docx

    a与角夕的终边重合):SMCoS1.角函数俵大小关系图 1、2、3、4表示第一、二、三、 四象限半所在区域 = 360°"夕三角函数1.与(0o<a<360°)终边相同的角的集合(角夕=A360°+Mz终边在X轴上的角的集合:M=-180°Mz终边在y轴上的角的集合:夕="180°+90Fz终边在坐标轴上的角的集合:=k×90kez终边在尸轴上的角的集合:物IP=ZXI800+45°z终边在y=-x轴上的角的集合:MIP=AXI800-45Fez若角与角尸的终边关于X轴对称,则角与角尸的关系:若角a与角0的终边关于y轴对称,若角a与角0的终边在一条直线上,则角a与角户的关系:=360Y+180°-夕则角a与角的关系:=180Z+/角与角尸的终边互相垂直,则角与角尸的关系:=360°左+6±90°2.角度与弧度的互换关系:360o=2-180o=-1o=0.017451=57.30o=57o18,注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式:Irad=弛°257.30°=57018'.10=,_=0.01745(rad)1803、弧长公式:/=|ar.扇形面积公式:S喇形=g> = g,正弦线:MP; 余弦线:OM; 正切线:AT.7.三角函数的定义域:三角函数定义域f(x)=sinxxxR/(x)=COSXxx?)f(x)=tanxxIXR.xA+gr,Aez)f(x)=COUxxRMxkykeZ/(x)=SecXxIxRKx左乃+B乃,Azf(x)=CSCXxxeRjIXk,keZ8、同角三角函数的基本关系式:包3=sncosflfCosorSinaanacot=lcscsin=1SeCaCoSa=Isin2a+cos2a-1sec2a-tan2a=1csc2a-cot2a-19、诱导公式:把3±a的三角函数化为a的三角函数'概括为:“奇变偶不变,符号看象限”三角函数的公式:(一)基本关系公式组一sinx CSCA= 1COSx seat= 1IanX cou=lsin X taiLV=COSXcos COtX=sinxsin2+cos2.r= 11 +tan2 X =sec21+COt2A-=CSC2X公式组二sin(2Ar+x)=Sinxcos(22+x)=cosXtan(2k+x)=tanxcot(2Ar+x)=cotx公式组三sin(-x)=-sinxCOS(T)=cosxtan(-x)=-tanxCot(T)=-cotx公式组四sin(+x)=-sinXCOSQr+x)=-cosxtan(-+x)=tanxC0t(+)=cotx公式组五sin(2-x)=-sinxcos(2,-x)=cosxtan(2乃-X)=-IanXcot(2-x)=-cotx公式组六sin(-x)=sinxcos(-x)=-cosxtan(-x)=-tancot(-x)=-cotx(二)角与角之间的互换公式组二sin2a = 2sinacosa公式组一cos(+/?)=cosacos?-sinasinCOS(-) = COSaCOS力+sin sin cos2« =cos2 flf-sin2 = 2cos2 a- = l-2sin2 asin(a + /?) = sin a cos +cos a sin Sin(Q _ ) = sin a cos - cos a sin tan2 =2 tanal-tan2 a.asin = ±.2I-COSaa , l + cosa cos = ±J2 V 2zc、tana+tantan(+)=-1-tanatan/?公式组三公式组四公式组五2tanysina=,2al÷tan2Sinass=sin(+/)+sin(-COSS%a)=SinaCoSaSin=Lsin(a+4)-sin(a12sin(一万一a)=COSa,2a1-tanCoSa=-.2a1+tan212cosacos=cos(a+)+cos(a尸),2tan(-a)=cotasinasin=cos(÷7)-cos(a-6)°c,°CABa。-Pcos(-÷)=-sinasin+sin夕=2sin-cos-)zc、tana-tanZ?tan(-=-1+tanatan/?aIl-cosaSlnaI-CoSatan=±J=2Vl+cosal+cosasinaC a2tan-2 tan a =-2 a1 - tan 26-sin 15 - cos75 =4.CCa+P.a-Dsn-sin夕=2cos-Smtan(-÷)=-cotaa-a-COSa+cos夕=2cos-cos-C.2S叱Ka)=CoSacosa-cos/=-2sin-sinJtan15=cot75=2-3,.tan75=cotl5°=2+3sin750=CoSI5"=瓜'叵410.正弦、余弦、正切、余切函数的图象的性质:/y=sinXy=COSXy=tanxy=cotxy=Asin(<r+¢>)(A、>0)定义域RRxxR且XHk乃+;兀,kzxIXRliXk,%ZR值域-1,+1-L+1RR一A,A周期性221r奇偶性奇函数偶函数奇函数奇函数当叩0,非奇非偶当e=0,奇函数单调性F2k,2y+2k上为增函数;I-2kr,2+2M上为减函数(AZ)(2k-),2k上为增函数2k,(2k+l)j上为减函数(Z)(.-+kik上为增函数(Z)OU,(4+1卜)上为减函数(AZ)2k,12+-(-A)1.J上为增函数;CI2k+Z(八),32+-(Y).J上为减函数反.一般地,若y=)在0,b上递增(减),则y=-f(x)在,b上递减(增).y=nM与'=COSX的周期是4.y=sin(v+0)或y=8式6+夕)(0)的周期T=若.土的周期为2乃(2=p,如图,翻折无效).My=sin(ar+e)的对称轴方程是+g(AeZ),对称中心(A%,0);y=cos(r+e)的k冗对称轴方程是X=&万(AWZ),对称中心(而+b0):y=tan(0r+g)的对称中心(一,0).2'2y-cos2x-原总y=-cos(-2x)-cos2x当tanatan尸=1,a+夕=Ar+g(AeZ);tanatan/?=-l,a-=k+(keZ).y=cosx与y=sinx+2版是同一函数,而y=(6+是偶函数,则y=(5+9)=sin(0w:+4乃+g乃)=±cos(v)函数y=tanx在R上为增函数.(X)只能在某个单调区间单调递增.若在整个定义域,y=tanx为增函数,同样也是错误的.定义域关于原点对称是定具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:f(-x)=(x),奇函数:/S)=-/3)奇偶性的单调性:奇同偶反.例如:y=tanx是奇函数,y=tan。+;幻是非奇非偶.(定义域不关于原点对称)奇函数特有性质:若0x的定义域,则/(%)一定有o)=(Ocx的定义域,则无此性质)Iy=Sinl.q不是周期函数;、=卜山1|为周期函数(7=4);JFol15做y=c(是周期函数(如图);y=cos为周期函数(T=笈);y=cos2x+'的周期为万(如图),并非所有周期函数都有最小正周期,例如:2y=/(x)=5=f(x+k),kcR.y=cos+力Sin=-Ja2+b2sin(+)+cos=-有Ja2+b2y.三角函数的图象变换有振幅变换、周期变换和相位变换等.函数y=Asin(+)的振幅A,周期丁二生,频率=_!_=应!,相位)X+Q;初相0T2万(即当X=O时的相位).(当A>0,>0时以上公式可去绝对值符号),由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当A>1)或缩短(当OVlAl<1)到原来的IAl倍,得到y=Asinx的图象,叫做振幅变换或叫沿V轴的伸缩变换.(用y/A替换y)由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(OVlV1)或缩短(>l)到原来的倍,得到y=sinaX的图象,叫做周期变换或叫做沿X轴的伸缩变换.(用ax替换X)由y=Sinx的图象上所有的点向左(当>0)或向右(当<0)平行移动II个单位,得到y=sin(x+)的图象,叫做相位变换或叫做沿X轴方向的平移.(用x+替换x)由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动IbI个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b潜换y)由y=sinx的图象利用图象变换作函数y=Asin(+)(A>0,>0)(xR)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延X轴量伸缩量的区别。高中数学三角函数常见习题类型及解法1 .三角函数恒等变形的基本策略。(1)常值代换:特别是用“1”的代换,如I=Cos2+sin2=tanxcotx=tan45o等。(2)项的分拆与角的配凑。如分拆项:sin2x+2cos2x=(sin2x+cos2x)+cos2x=l+cos2x;酉己凑角:=(÷)-,二"+'2_a-笺2 °(3)降次与升次。(4)化弦(切)½o(4)引入辅助角。asin+bcos=ya2+b2sin(+),这里辅助角/所在象限由a、b的符号确定,°角的值由tane=2确定。a2 .证明三角等式的思路和方法。(1)思路:利用三角公式进行化名,化角,改变运算结构,使等式两边化为同一形式。(2)证明方法:综合法、分析法、比较法、代换法、相消法、数学归纳法。3 .证明三角不等式的

    注意事项

    本文(三角函数 专题练习题.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开