欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    固态电池与传统液态电池的工艺差异.docx

    • 资源ID:1373088       资源大小:107.96KB        全文页数:8页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    固态电池与传统液态电池的工艺差异.docx

    固态电池与传统液态电池的工艺差异一、固态电池和传统液态电池工艺差异固态电池采用固态电解质取代传统液态电池的电解液和隔膜。传统液态锂电池由正极、负极、电解液和隔膜四大关键要素组成。固态电池采用固态电解质取代传统液态电池中的电解液和隔膜。传统电池-液态电解液固态电池-固态电解质由于全固态电池采用全新的材料体系和电池结构,现有的传统锂电池制造工艺和设备无法实现其产业化生产与制造,需要进行相应的创新和改进。目前全固态电池尚未量产,因此,生产工艺并未定型,并且不同类型的固态电池生产工艺和制造过程会有所不同,具体取决于电池的设计和应用。但可以确定的是,全固态电池生产工艺与现有的传统液态电池生产工艺存在较大差异。主要体现在如下方面:1、前段极片制作环节传统锂电池:采用湿法合浆和涂布技术,将活性材料、导电剂和黏结剂混合成浆料后涂布在集流体上,随后进行干燥和根压。固态电池:引入干法电极技术,省去溶剂使用,直接通过干法合浆和涂布工艺制备极片。止匕外,还需额外进行电解质膜的涂布与根压,以形成固态电解质层。2、中段电芯装配环节传统锂电池:采用卷绕或叠片工艺,将正负极片和隔膜卷绕成电芯,随后注入电解液并进行封装。固态电池:采用叠片工艺,结合极片胶框印刷和等静压技术,确保固态电解质与电极之间的紧密接触。由于全固态电池无需电解液,省去了注液工序。3、后段化成封装环节传统锂电池:封装后通过低压化成激活电池。固态电池:由于固态电解质的高离子电导率需求,化成过程趋向高压化,以优化电池性能。综合来看,全固态电池相对传统液态锂电池的核心生产工序主要区别在于:前段固态电解质和极片制作环节,全固态电池更适配干法电极技术,增加了干法混合、干法涂布实现固态电解质膜制备;中段电芯装配环节,固态电池采用“叠片技术”取代传统的卷绕工艺,并删减了注液工序;后段化成封装环节,从化成分容转向高压化成分容。二、固态电池工艺1、干法电极技术更适配固态电池干法电极技术最大的优势在于能够提高电极的压实密度,从而提高电池能量密度。干法电极工艺是一种新型的电极制造工艺,最大的优势在于能够提高电极的压实密度。目前锂电池主要采用传统的湿法电极制造工艺。湿法电极制造过程中,需要使用溶剂将活性材料、导电剂和黏结剂混合后涂布在集流体上,然后再进行干燥、NMP溶剂回收和辐压。而干法电极技术则直接将电极材料混合成干粉,通过机械压到集流体上形成电极片。这种方法可以提高电极的压实密度。对于固态电池而言,更高的压实密度意味着在相同体积下可以容纳更多的正负极材料,从而提高电池的能量密度。干法电极技术更适配固态电池等高能量密度电池。干法电极技术的理念与固态电池类似,在全固态电池中,硫化物电解质对有机溶剂较敏感,同时金属锂容易与溶剂反应导致膨胀,传统的PVDF-NMP体系黏结强度有限,而干法电极中由PTFE(聚四氟乙烯)原纤维化构成的二维网络结构,可以抑制活性物质颗粒的体积膨胀,防止其从集流体表面脱落。止匕外,采用干法电极工艺,固态电池的极片制造过程可以实现完全干燥,消除湿法工艺烘干后溶剂分子的残留问题。因此,干法电极技术更适用于固态电池生产中。干法电极技术工艺简化提升效率,具有成本优势,有利于推动固态电池商业化。干法电极工艺可以简化生产工艺,降低成本,提高生产效率。干法极片制造无需NMP溶剂,在极片制作环节可减少烘干及溶剂回收环节,将电极制造过程一体化,将湿法工艺所需的混合、制浆、涂布、干燥、根压等过程一体化,工艺流程更简单,设备占地面积更小。根据纳科诺尔预计,干法电极量产后可降低电池成本10%以上。并且流程简化后的干法电极技术适配电池极片的大规模生产。因此,干法电极技术被认为是推动固态电池商业化的重要技术之一。目前干法电极技术的关键难点:根据纳科诺尔介绍,目前干法电极技术的关键难点在于混合电极材料粉末的均匀性以及成膜的一致性。在设备领域,干法工艺对辐压的精度、均匀度以及压实密度的要求会更高。叠片机:固态电池不适用卷绕设备,需要使用叠片机,且精度要求更高。无论固态电池还是液态电池都需要用到叠片机,但由于固态电池的固态电解质具有脆性特性,且对设备的精度和稳定性要求更高,使得其需要进行更多的叠片工艺,因此,固态电池制造所需要的叠片机需求也会增加。负极正极集流体全固态电池内串联固态电池极片胶框覆合技术:提升固态电池极片贴合度,避免内短路问题现有的固态电池生产工艺仍不成熟,存在一些不足之处,当极片料卷在完成裁断工序后与其他极片进行复合、以制备固态电池电芯时,难以确保相邻的极片之间具有高的贴合度,从而导致固态电池电芯的质量下降。根据利元亨公开的专利技术,其提出了一种固态电池极片胶框覆合方法、装置及叠片设备,能够提升固态电池电芯中的相邻极片之间的贴合度,保证固态电池电芯的质量佳。等静压机为核心增量设备之一:等静压技术用于改善固态电池固固界面接触问题。生产固态电池一般是将正极、固态电解质、负极堆叠在一起组装。考虑到固态电解质要与电极形成良好的固固界面接触、在循环过程中会发生接触损耗以及要抑制锂枝晶形成等,堆叠时需要新增加压设备,施加超过100MPa压力使各材料致密堆积。传统热压、辐压方案提供压力有限且施加压力不均匀,难以保证致密堆积的一致性要求,进而影响固态电池的性能。等静压技术基于帕斯卡原理,金属、陶瓷、复合材料和聚合物等材料都能实现致密化,消除孔隙。对于固态电池而言,等静压技术可以有效消除电芯内部的空隙,确保电解质材料达到理想的致密化程度,提升电芯内组件界面之间的接触效果,从而显著提升离子电导率30%以上,降低电池内部电阻率20%以上,循环寿命提升40%,大幅改善电池性能。而等静压成型需要用到的设备为等静压机。目前等静压技术在固态电池制造领域面临的挑战:等静压技术本身是一项成熟的技术,在陶瓷、粉末冶金等领域已有广泛应用。然而,在固态电池领域的应用仍处于探索和发展阶段,技术成熟度相对较低。目前等静压技术在固态电池领域的推广仍然面临着如何选取合适的压制温度和压力组合,以及如何控制压实质地,如何提高生产效率与良率等挑战。3、后段化成封装环节:新增高压化成设备常规的锂电池化成压力要求为3-10吨,而固态电池化成的压力要求提高至60-80吨。固态电池需要高压化成的核心原因在于其独特的固-固界面特性和离子传导机制,这与传统液态电池的化成过程存在本质差异。解决固固界面接触问题:固态电解质与电极之间是刚性接触,存在微观空隙和接触不良,必须通过高压(通常60-100MPa)压制才能消除界面空隙,增大有效接触面积;促进固态电解质与电极的物理/化学结合。激活离子传导通道:固态电解质离子电导率低,需要高压化成实现强制锂离子穿透固固界面屏障,在界面处形成离子导通网络,以及降低界面阻抗。

    注意事项

    本文(固态电池与传统液态电池的工艺差异.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开