苏教版小学六年级总复习知识点整理.docx
苏教版小学六年级数学总复习知识点整理数与代数数的认识一、概念(一)整数1.自然数、负数和整数(1)、自然数:我们在数物体的时候,用来表示物体个数的1,2,3叫做自然数。一个物体也没有,用O表示。O也是自然数。1是自然数的根本单位,任何一个自然数都是由假设干个1组成。是最小的自然数,没有最大的自然数。(2、负数:在正数前面加上“-”的数叫做负数,叫做负号。正整数1、2、3、4、T自然数(3)整数T零(0既不是正数,也不是负数)J负整数-1、-2、-3、-42、零的作用m表示数位。读写数时,某个单位上一个单位也没有,就用0表示。占位作用。3)作为界限。如“零上温度与零下温度的界限”。3、计数单位:一个)、十、百、千、万、十万、百万、千万、亿都是计数单位。每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。4、数位:计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。5、数的整除(1)如果数a能被数bb0)整除,a就叫做b的倍数,b就叫做a的因数。(2) 一个数的因数的个数是有限的,其中最小的因数是1,最大的因数是它本身。(3) 一个数的倍数的个数是无限的,其中最小的倍数是它本身。(4)个位上是0、2、4、6、8的数,都能被2整除。5)个位上是0或5的数,都能被5整除。6)一个数的各位上的数的和能被3整除,这个数就能被3整除。7)能被2整除的数叫做偶数。不能被2整除的数叫做奇数。也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。8)一个数,如果只有1和它本身两个因数,这样的数叫做质数或素数)。100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。9)一个数,如果除了1和它本身还有别的因数,这样的数叫做合数。101不是质数也不是合数,自然数除了1外,不是质数就是合数。如果把自然数按其因数的个数的不同分类,可分为质数、合数和L11)几个数公有的因数,叫做这几个数的公因数。其中最大的一个因数,叫做这几个数的最大公因数。12)公因数只有1的两个数,叫做互质数,成互质关系的两个数,有以下几种情况:1和任何自然数互质。相邻的两个自然数互质。两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质。两个合数的公因数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的因数,那么较小数就是这两个数的最大公因数。如果两个数是互质数,它们的最大公因数就是1。13)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。几个数的公因数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1、小数的意义1)把整数1平均分成10份、100份、100o份得到的十分之几、百分之几、千分之几可以用小数表示。(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几3)一个小数由整数局部、小数局部和小数点局部组成。数中的圆点叫做小数点,小数点左边的数叫做整数局部,小数点右边的数叫做小数局部。4)在小数里,每相邻两个计数单位之间的进率都是10。小数局部的最高分数单位“十分之一”和整数局部的最低单位“一”之间的进率也是10。2、小数的分类三)分数1、分数的意义(1把单位“1”平均分成假设干份,表示这样的一份或者几份的数叫做分数。2)在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线上面的数叫做分子,表示有这样的多少份。(3)把单位'T”平均分成假设千份,表示其中的一份的数,叫做分数单位。2、分数的分类真分数:分子比分母小的分数叫做真分数。真分数小于1。假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于K带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。3、约分和通分把一个分数化成同它相等但是分子、分母都比拟小的分数,叫做约分。分子分母是互质数的分数,叫做最简分数。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。(四百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。百分数通常用%来表示。百分号是表示百分数的符号。二、方法(一数的读法和写法1 .整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,再在后面加一个“亿”或“万”字。每一级末尾的O都不读出来,其它数位连续有几个。都只读一个零。2 .整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数位上写0。3 .小数的读法:读小数的时候,整数局部按照整数的读法读,小数点读作“点”,小数局部从左向右顺次读出每一位数位上的数字。4 .小数的写法:写小数的时候,整数局部按照整数的写法来写,小数点写在个位右下角,小数局部顺次写出每一个数位上的数字。5 .分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法来读。6 .分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。7 .百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。8 .百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“”来表示。(二数的改写一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还可以根据需要,省略这个数某一位后面的数,写成近似数。1 .准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。2 .近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。3 .四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。4 .大小比拟(1)比拟整数大小:比拟整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。(2)比拟小数的大小:先看它们的整数局部,,整数局部大的那个数就大;整数局部相同的,十分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大(3)比拟分数的大小:分母相同的分数,分子大的分数比拟大;分子相同的数,分母小的分数大。分数的分母和分子都不相同的,先通分,再比拟两个数的大小。三数的互化1 .小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。2 .分数化成小数:用分子除以分母。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保存三位小数。3 .一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。4 .小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。5 .百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。6 .分数化成百分数:通常先把分数化成小数(除不尽时,通常保存三位小数),再把小数化成百分数。7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。三、性质和规律。(一商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍数(0除外,商不变。(二小数的性质小数的性质:在小数的末尾添上零或者去掉零,小数的大小不变。三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大100O倍2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小100O倍3、小数点向左移或者向右移位数不够时,要用“0补足位。(四分数的根本性质分数的根本性质:分数的分子和分母都乘以或者除以相同的数零除外),分数的大小不变。(五)分数与除法的关系1、被除数÷除数二号翳除数2、因为零不能作除数,所以分数的分母不能为零。3、被除数相当于分子,除数相当于分母。四、分数和百分数的应用1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法根本相同,所不同的只是在数或未知数中含有分数。2、分数乘法应用题:是指一个数,求它的几分之几是多少的应用题。特征:单位“1”的量和分率,求与分率所对应的实际数量。解题关键:准确判断单位“1”的量。找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。3、分数除法应用题:C)求一个数是另一个数的几分之几(或百分之几)是多少。特征:一个数和另一个数,求一个数是另一个数的几分之几或百分之几。“一个数”是比拟量,“另一个数”是标准量。求分率或百分率,也就是求他们的倍数关系。解题关键:从问题入手,搞清把谁看作标准的数也就是把谁看作了“单位1”,谁和“单位1”的量作比拟,谁就作被除数。甲是乙的几分之几(百分之几:甲是比拟量,乙是标准量,用甲除以乙。关系式:甲乙甲比乙多或少几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几关系式:两数之差÷标准量2一个数的几分之几或百分之几),求这个数。特征:一个实际数量和它相对应的分率,求单位“1”的量。解题关键:准确判断单位“1”的量把单位“1”的量看成X根据分数乘法的意义列方程,或者根据分数除法的意义列算式,但必须找准和分率相对应的实际数量。4、百分率:例如发芽率=发芽种子数÷试验种子数X100%小麦的出粉率=面粉的重量÷小麦的重量XIO0%产品的合格率=合格的产品数÷产品总数X100%职工的出勤率=实际出勤人数÷应出勤人数又100%5、工程问题:是分数应用题的特例,它与整数的工作问题有着密切的联系。它是探讨工作总量、工作效率和工作时间三个数量之间相互关系的一种应用题。解题关键:把工作总量看作单位'T”,工作效率就是工作时间的倒数。6、利息:存入银行的钱叫做本金。取款时银行多支付的钱叫做利息。利息与本金的比值叫做利率。利息=本金义利率义时间,税后利息、=本金X利率X时间义1-利息税常见的量一)质量1、常用单位吨t、千克kg、克g2、常用换算一吨=100O千克1千克二100O克二)时间1、常用单位年、月、日、时、分、秒2、单位换算1年二365天平年一年二366天闰年、三、五、七、八、十、十二是大月大月有31天四、六、九、十一是小月小月小月