欢迎来到第壹文秘! | 帮助中心 分享价值,成长自我!
第壹文秘
全部分类
  • 幼儿/小学教育>
  • 中学教育>
  • 高等教育>
  • 研究生考试>
  • 外语学习>
  • 资格/认证考试>
  • 论文>
  • IT计算机>
  • 法律/法学>
  • 建筑/环境>
  • 通信/电子>
  • 医学/心理学>
  • ImageVerifierCode 换一换
    首页 第壹文秘 > 资源分类 > DOCX文档下载
    分享到微信 分享到微博 分享到QQ空间

    2023-2024学年人教A版必修第二册 第八章 与球有关的“切”“接”问题 学案.docx

    • 资源ID:1006384       资源大小:80.93KB        全文页数:5页
    • 资源格式: DOCX        下载积分:5金币
    快捷下载 游客一键下载
    账号登录下载
    三方登录下载: 微信开放平台登录 QQ登录
    下载资源需要5金币
    邮箱/手机:
    温馨提示:
    快捷下载时,如果您不填写信息,系统将为您自动创建临时账号,适用于临时下载。
    如果您填写信息,用户名和密码都是您填写的【邮箱或者手机号】(系统自动生成),方便查询和重复下载。
    如填写123,账号就是123,密码也是123。
    支付方式: 支付宝    微信支付   
    验证码:   换一换

    加入VIP,免费下载
     
    账号:
    密码:
    验证码:   换一换
      忘记密码?
        
    友情提示
    2、PDF文件下载后,可能会被浏览器默认打开,此种情况可以点击浏览器菜单,保存网页到桌面,就可以正常下载了。
    3、本站不支持迅雷下载,请使用电脑自带的IE浏览器,或者360浏览器、谷歌浏览器下载即可。
    4、本站资源下载后的文档和图纸-无水印,预览文档经过压缩,下载后原文更清晰。
    5、试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓。

    2023-2024学年人教A版必修第二册 第八章 与球有关的“切”“接”问题 学案.docx

    题型突破析典例CS嘉提刀漆与球有关的“切”“接”问题技法归纳活学活用空间几何体与球有关的“切”“接”问题是立体几何中的重点,也是难点.所谓几何体的外接球,是指几何体的各顶点(或旋转体的顶点、底面圆周)都在一个球面上,此球称为该几何体的外接球;内切球是指与几何体内各面(平面、曲面)都相切的球.求解此类问题的关键是作出合适的截面圆,确定球心,再由球的半径R截面圆的半径r及各几何量之间建立关系.题型一外接球【例1】(1)设直三棱柱A8CA8G的所有顶点都在一个球面上,AB=AC=AAyfC=120o,且底面AABC的面积为2百,则此直三棱柱外接球的表面积是()A.1611B.竺叵C.4011D.64113(2)已知三棱锥A-BCo的侧棱长为2通,底面是边长为2J的等边三角形,则该三棱锥外接球的体积为.解析(1)设AB=AC=AAi="?,因为n84C=120°,所以2XaX根XSinl200=2遥,11=22,而ZACB=30。,所以二冬=2r(厂是AABC外接圆的半径),r=22,如图,sn30设M,N分别是AABC和AAiBG的外接圆圆心,由直棱柱的性质知MN的中点。是三棱柱ABC-A由IG的外接球球心,OM=TMN=IAl=,所以外接球半径H=OA=(2)如图所示,该三棱锥为正三棱锥,O为底面48CO的中心且Ao垂直于底面8CD,0,在线段40上,0,为外接球球心,令Oa=OD=R,OO=|。E=IX25x苧=2,AD=25,:.AO=AD2-OD2=41:.OO-4-Rt又O。"+。?=。,D2,.(4-r)2+4=R2,解得R=.;.4球=扣?3=罢11.答案(I)C(2)36通性通法常见几何体外接球问题的求解策略(1)正方体、长方体的外接球:正方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半;长方体的外接球的球心为其体对角线的中点,半径为体对角线长的一半.(2)棱锥的外接球:以下四种类型的三棱锥可以补型为长方体求解.三棱锥P-ABC三条三棱锥P-ABC四个侧枝两两互相垂直面均为直角三角形三棱锥P-ABC三棱锥PYBC(3)圆柱、圆锥的外接球:作轴截面,将空间问题转化为平面问题.农为外接球的半径.f+(口跟踪训练1.据九章算术记载,“鳖疆”为四个面都是宜角三角形的三棱锥.如图所示,现有一个“鳖席”,PA±JgffiABC,AB1.BC,且PA=A8=BC=2,则三棱锥外接球表面积为()A.10兀B.1211C.1411D.1611prAP2A-AB2A-BC2+4+4解析:B如图,将三棱锥补形为正方体,则外接球半径R=卷=A=匕尹=5.所以三棱锥外接球表面积S=47rN=47iX3=12兀.2.已知圆柱的底面半径为1,母线长为2,则该圆柱的外接球的体积为()A5511n821120511、64211A.B.C.-D.-6333解析:B如图,。为外接球球心,母线6所的长度为2,底面半径r=。28=1,易得外接球半径R=OB=J外接球体积V=()兀故选B.题型二内切球【例2】(1)一个球与一个正三棱柱的三个侧面和两个底面都相切,已知这个球的体积为等,那么这个正三棱柱的体积是()A.963B.163C.243D.483(2)若圆台的上、下底面半径分别为r,R,则其内切球的表面积为()A.411(r+R)2BAnz2R2CA11RrD.11(R+r)2解析(1)设正三棱柱的底面边长为°,则球的半径正三棱柱的高3263为争.又Vii=3=y×-3a=43.Vu=×(43)2×y×43=483.(2)如图,BE=BO2=rtAE=AOi=R,又0E_1.A5且80_1.0A,.,.AE00EB,C-OEr=AEBE=Rry工球的表面积为411OE2=411?/-.答案(I)D(2)C通性通法常见几何体内切球问题的求解策略(1)正方体的内切球:正方体的内切球球心位于其体对角线中点处,设边长为白的正方体,其内切球半径为R=;;(2)圆锥的内切球:圆锥的轴截面为等腰三角形,等腰三角形的内切圆的半径即为内切球的半径,设圆锥底面半径为r,高为力,R=,rh.提醒棱锥的内切球:用等积法求解,设棱锥的体积为匕表面积为S,R=卷G跟踪训练1 .正方体的外接球与内切球的表面积之比为()A.3B,33c3D-3解析:C设正方体的外接球的半径为R,内切球的半径为八棱长为1,则正方体的外接球的直径为正方体的体对角线长,即2R=5,所以R=当,正方体内切球的直径为正方体的棱长,即2-1,即T所以百,正方体的外接球与内切球的表面积之比为渭芸=3.2 .四棱锥P-ABCQ的底面ABCO是边长为6的正方形,KPA=PB=PC=PDf若一个半径为1的球与此四棱锥所有面都相切,则该四棱锥的高是()A.6解析:DB.5D.-4过点P作尸“_1_平面ABCO于点”.由题意知,四棱锥P-A8。是正四棱锥,内切球的球心。应在四棱锥的高产”上.设PH=,易知RtAPMOSRt所以要FH9,即1,解得(力=0舍去),故选D.PF3fl2+324

    注意事项

    本文(2023-2024学年人教A版必修第二册 第八章 与球有关的“切”“接”问题 学案.docx)为本站会员(p**)主动上传,第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知第壹文秘(点击联系客服),我们立即给予删除!

    温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载不扣分。




    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    copyright@ 2008-2023 1wenmi网站版权所有

    经营许可证编号:宁ICP备2022001189号-1

    本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。第壹文秘仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知第壹文秘网,我们立即给予删除!

    收起
    展开